Stacking Label Features for Learning Multilabel Rules

نویسندگان

  • Eneldo Loza Mencía
  • Frederik Janssen
چکیده

Dependencies between the labels is commonly regarded as the crucial issue in multilabel classification. Rules provide a natural way for symbolically describing such relationships, for instance, rules with label tests in the body allow for representing directed dependencies like implications, subsumptions, or exclusions. Moreover, rules naturally allow to jointly capture both local and global label dependencies. We present a bootstrapped stacking approach which uses a common rule learner in order to induce label-dependent rules. For this, we learn for each label a separate ruleset, but we include the remaining labels as additional attributes in the training instances. Proceeding this way, label dependencies can be made explicit in the rules. Our experiments show competitive results in terms of the standard multilabel evaluation measures. But more importantly, using these additional attributes is shown to allow to discover and consider label relations as well as to better comprehend the available multilabel datasets. However, this approach is only a first step towards integrating the multilabel rule learning directly in the rule induction process, e.g., in typical separate-andconquer rule learners. We present future perspectives, advantages, and arising issues in this regard.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prescription Function Prediction Using Topic Model and Multilabel Classifiers

Determining a prescription's function is one of the challenging problems in Traditional Chinese Medicine (TCM). In past decades, TCM has been widely researched through various methods in computer science, but none concentrates on the prediction method for a new prescription's function. In this study, two methods are presented concerning this issue. The first method is based on a novel supervise...

متن کامل

A Self-Paced Regularization Framework for Multi-Label Learning

In this brief, we propose a novel multilabel learning framework, called multilabel self-paced learning, in an attempt to incorporate the SPL scheme into the regime of multilabel learning. Specifically, we first propose a new multilabel learning formulation by introducing a self-paced function as a regularizer, so as to simultaneously prioritize label learning tasks and instances in each iterati...

متن کامل

Random k -Labelsets: An Ensemble Method for Multilabel Classification

This paper proposes an ensemble method for multilabel classification. The RAndom k-labELsets (RAKEL) algorithm constructs each member of the ensemble by considering a small random subset of labels and learning a single-label classifier for the prediction of each element in the powerset of this subset. In this way, the proposed algorithm aims to take into account label correlations using single-...

متن کامل

A Study of multilabel text classification and the effect of label hierarchy

Text classification has traditionally been one of the most popular problems in information retreival, natural language processing and machine learning. In the simplest case, the task of text classification [1] is as follows: A set of training documents T = {X1, X2, ...Xm} , each labelled with a class value from a set of k distinct labels, from the set {1, 2, ..k}, is used to learn a classificat...

متن کامل

A Unified Model for Multilabel Classification and Ranking

Label ranking studies the problem of learning a mapping from instances to rankings over a predefined set of labels. Hitherto existing approaches to label ranking implicitly operate on an underlying (utility) scale which is not calibrated in the sense that it lacks a natural zero point. We propose a suitable extension of label ranking that incorporates the calibrated scenario and substantially e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014